Procs
func betavariate(self: PyRandom; alpha, beta: float): float {. ...raises: [ValueError], tags: [], forbids: [].}
-
Beta distribution.
Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.
The mean (expected value) and variance of the random variable are:
E[X] = alpha / (alpha + beta) Var[X] = alpha * beta / ((alpha + beta)**2 * (alpha + beta + 1))
Source Edit func binomialvariate(self: PyRandom; n = 1.0; p = 0.5): float {. ...raises: [ValueError], tags: [], forbids: [].}
-
Binomial random variable.
Gives the number of successes for n independent trials with the probability of success in each trial being p:
sum(random() < p for i in range(n))
Returns an integer in the range: 0 <= X <= n
The mean (expected value) and variance of the random variable are:
E[X] = n * p Var[x] = n * p * (1 - p)
Source Edit func expovariate(self: PyRandom; lambd = 1.0): float {....raises: [], tags: [], forbids: [].}
- Source Edit
func gammavariate(self: PyRandom; alpha, beta: float): float {. ...raises: [ValueError], tags: [], forbids: [].}
- Source Edit
func lognormalvariate(self: PyRandom; mu, sigma: float): float {....raises: [], tags: [], forbids: [].}
- Source Edit
func normalvariate(self: PyRandom; mu = 0.0; sigma = 1.0): float {....raises: [], tags: [], forbids: [].}
- Source Edit
func paretovariate(self: PyRandom; alpha: float): float {....raises: [], tags: [], forbids: [].}
- Pareto distribution. alpha is the shape parameter. Source Edit
func triangular[F: SomeFloat](self: PyRandom; low: F = 0.0; high: F = 1.0): F
- Source Edit
func triangular[F: SomeFloat](self: PyRandom; low: F = 0.0; high: F = 1.0; mode: F): F
- Source Edit
func vonmisesvariate(self: PyRandom; mu, kappa: float): float {....raises: [], tags: [], forbids: [].}
- Source Edit
func weibullvariate(self: PyRandom; alpha, beta: float): float {....raises: [], tags: [], forbids: [].}
-
Weibull distribution.
alpha is the scale parameter and beta is the shape parameter.
Source Edit
Methods
method getrandbits(self: PyRandom; k: int): int {.base, ...raises: [], tags: [], forbids: [].}
-
_random_Random_getrandbits_implHint: raises ValueError if k >= 8*sizeof(int)Source Edit
Templates
template betavariate(alpha, beta: float): float
- Source Edit
template binomialvariate(n = 1.0; p = 0.5): float
- Source Edit
template expovariate(lambd = 1.0): float
- Source Edit
template gammavariate(alpha, beta: float): float
- Source Edit
template getrandbits(k: int): int
- Source Edit
template lognormalvariate(mu, sigma: float): float
- Source Edit
template normalvariate(mu = 0.0; sigma = 1.0): float
- Source Edit
template paretovariate(alpha: float): float
- Source Edit
template shuffleImpl(self: PyRandom; x)
- inner. unstable. Source Edit
template triangular[F: SomeFloat](low: F = 0.0; high: F = 1.0): F
- Source Edit
template triangular[F: SomeFloat](low: F = 0.0; high: F = 1.0; mode: F): F
- Source Edit
template vonmisesvariate(mu, kappa: float): float
- Source Edit
template weibullvariate(alpha, beta: float): float
- Source Edit